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ABSTRACT Early diagnosis is critical for the development and success of interventions, and neuroimaging
is one of the most promising areas for early detection of Alzheimer’s disease (AD). This study is aimed
to develop a deep learning method to extract valuable AD biomarkers from structural magnetic resonance
imaging (sMRI) and classify brain images into AD, mild cognitive impairment (MCI), and cognitively
normal (CN) groups. In this work, we adapted and trained convolutional neural networks (CNNs) on sMRI
images of the brain from ADNI datasets available in online databases. Our proposed mechanism was used
to combine features from different layers to hierarchically transform the images from magnetic resonance
imaging into more compact high-level features. The proposed method has a reduced number of parameters
which reduces the computation complexity. The method is compared with the existing state-of-the-art works
for AD classification, which show superior results for the widely used evaluationmetrics, including accuracy,
an area under the ROC curve, etc., suggesting that our proposed convolution operation is suitable for the
AD diagnosis

INDEX TERMS Alzheimer’s disease (AD), magnetic resonance imaging (MRI), convolutional neural
network (CNN), image classification.

I. INTRODUCTION
Alzheimer’s disease (AD), a neurological degenerative dis-
ease, is a prominent challenge of the 21st century. Accord-
ing to the World Alzheimer’s report statistics, more than
55 million people have been diagnosed with Alzheimer’s
disease, and this number is increasing day by day, with
78 million expected by 2030 [1]. Clinically, the disease
manifests as memory loss, disorientation, and visuospatial
disturbances [2], to circumvent which many efforts have been
made for early detection and diagnosis of AD. Partial AD
treatment can be done by observing the symptoms; however,
a method to identify specific biomarkers in the cerebrospinal
fluid (CSF) is being developed for a more accurate diagno-
sis [3]. This is an intrusive investigation that may cause harm
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to the patient [4]. In addition, advanced imaging techniques
such as magnetic resonance imaging (MRI) and position
emission tomography (PET) can also be used to diagnose
AD-related structural and molecular biomarkers [5]. In par-
ticular, magnetic resonance imaging (MRI) is a non-invasive
and powerful tool for understanding and evaluating AD’s
anatomical and functional brain changes. They are recog-
nized as indispensable in clinical practice and play an impor-
tant role in AD disease progression [6]–[8].

Integration of large-scale, high dimensional, and multi-
modal data from rapidly advancing neuroimaging techniques
imposes difficulty for contemporary methods to identify the
disease. As a result, interest in computational machine learn-
ing methods for integrative analysis has exploded [9]–[12].
These methods have been used to generate the desired
output from training data, such as voxel intensity, tissue
density, and shape descriptor features. However, to use these
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machine learning algorithms for the classification of dis-
ease, pre-processing techniques must be adopted, which
are primarily time-consuming and computationally inten-
sive. Classification studies usingmachine learning algorithms
usually require four steps: feature extraction, feature selec-
tion, dimension reduction, and feature-based classification
algorithm selection [13], [14]. These steps require special-
ized knowledge and multiple optimization steps, which are
time-consuming and laborious. In contrast, researchers have
been exploring alternative techniques to traditional machine
learning, such as Deep Learning (DL) algorithms. Deep
learning has emerged as one of the widely adopted machine
learning algorithms, which has shown optimal results in vari-
ous domains, including speech recognition, computer vision,
and natural language understanding [15]–[18]. In general,
deep learning methods are a subset of representation-learning
methods in a way that they can automatically identify the
best representation from raw data without the need for prior
feature selection [19]. This is accomplished by employing
a hierarchical structure with varying levels of complexity,
as well as applying consecutive nonlinear transformations
to the raw data. These transformations produce increasingly
higher levels of abstraction, with higher-level features being
more insensitive to noise in the input data than lower-level
features [20]. Consequently, researchers are focusing their
efforts on developing a deep learning model in medical imag-
ing that can accurately diagnose the disease. Recently, deep
learning models have shown significant success in various
medical image analysis problems, including CT scans, MRIs,
X-rays, ultrasounds, and sentiment analysis [21]. It has pro-
duced notable results in detecting and classifying specific
diseases in the domains of the lungs, abdomen, brain, car-
diovascular, retina, and others [22].

Notably, the most widely used deep learning design, Con-
volutional Neural Network (CNN), has received a lot of
attention in medical image analysis due to its success in
image analysis and classification [23], [24]. These accom-
plishments have piqued the interest of researchers to improve
CNN-based systems for AD detection. Despite the fact that
the existing methods have provided good diagnostic results,
little has been done to optimize the architecture of CNN
for practical AD detection. Inspired by the success of deep
learning methods and patch-based mechanisms in medical
imaging, in this work, we propose an improved convo-
lutional neural network for AD diagnosis and prediction
using magnetic resonance images. The proposed architecture
significantly reduces the number of parameters and computa-
tional costs compared to conventional neural networks. Our
research contributions are fourfold:

1) This work explores the convolutional layer’s compu-
tational cost and concentrate on alternative methods
to perform convolution operation in order to reduce
the number of parameters and calculation costs while
maintaining classification accuracy.

2) Each layer is composed of a block containing a series
of operations on the input. The resolution and size of

the input to each operation in the block are kept the
same. The improvement demonstrated its usefulness in
classification performance of the proposed method.

3) The proposed model learns valuable features from the
input data without pre-processing and shows superior
performance.

4) The performance of the proposed method has been
compared with two state-of-the-art classification mod-
els: ResNet50 and VGG, which show better accuracy
results using less number of parameters.

The rest of the paper is organized as follows: Section II
introduces the relevant literature review, and Section III sum-
marizes the materials and methodology used in this article.
Sections IV and V presents the results of the experiments and
their interpretation. Section VI concludes with an outlook on
future projects.

II. RELATED WORK
Several approaches for neuroimaging classification have
been proposed in the recent years to improve classification
performance. We examine some machine learning (ML) clas-
sification structures used in neuroimaging, as well as methods
based on a convolutional neural network.

A. MACHINE LEARNING FOR NEUROIMAGING
In recent years, many machine learning-based techniques
have been used for multi-class classification and binary
classification for the early detection of Alzheimer’s dis-
ease. Kim et al. [25] proposed a fully automated classifica-
tion method in which cortical thickness features for diagnosis
have been used. Long et al. [26] investigated the regional
morphological differences in the brain. They observed the
hippocampus and amygdala deformation to identify the pro-
gressive MCI. Where, diffusive morphological changes in
the whole-brain gray matter (GM) were responsible for
determining mild or moderate AD. Subsequently, these sub-
jects were classified using a linear support vector machine
(SVM). Guo et al. [27] proposed extracting and combining
the brain region and subgraph features of functional mag-
netic resonance imaging, which were then utilized for train-
ing the multi-kernel SVM for classification. This approach
retains the global topological information and the sen-
sitivity to change in the brain region. In contrast to
Guo et al., Khedher et al. [28] proposed a method for classi-
fying AD using independent component analysis to extract
features from regions of white matter (WM), GM, and cere-
brospinal fluid (CSF) for training SVM classifier. Moreover,
Tong et al. [29] proposed multiple learning instances for
dementia classification, where features were formed by
extracting pockets of MRI voxel patches and mapping them
to graphs. An SVM classifier was then used to distinguish
between AD patients and NC (Normal Control) subjects.
In another work, Gupta et al. [30] used machine learning
approaches (SVM, k-nearest neighbor (KNN), and Random
Forest (RF)) to classify atrophic states (AD, NC/healthy
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control (HC), asymptotic Alzheimer’s disease (aAD), mild
Alzheimer’s disease (mAD)) using combined voxel-based
morphometry (VBM) features, cortical and subcortical volu-
metric features (CSC) and hippocampal volumetric features.

B. CNN METHODS FOR NEUROIMAGING
The enormous potential of deep learning has been observed
in the medical image diagnosis [31]–[33], where initially,
it was used for region segmentation or feature extraction,
followed by traditional machine learning algorithms such as
SVM and boosting. For instance, Silva et al. [34] proposed
a convolutional neural network for feature extraction from
MRI scan, followed by SVM, KNN, and Random Forest
algorithms for Alzheimer’s disease classification. Similarly,
Liu et al. [35] proposed a deep convolutional feature learning
method for classification of AD andMCI using both unsuper-
vised and supervised learning. Owing to the recent success
of deep learning, especially convolutional neural networks in
the field of computer vision for extracting image features,
their potential has been explored for AD diagnosis [36].
For instance, Wang et al. [37] used brain extraction tools to
select the hippocampus-containing slices and fed them to a
convolutional neural network for diagnosis. In addition to
that a patch-based ensemble classifier was created to predict
the AD and NC classes [38]. Furthermore, for the diagnosis
of Alzheimer’s disease, 2-D and 3-D deep learning models
were developed in [39]. Unlike others, Basaia et al. [40] per-
formed the extra operation of augmentation of training data
by deforming, cropping, rotating, flipping, and scaling MRI
data at different angles before feeding it into a convolutional
neural network for diagnosis.

In more recent work, Korolev et al. [41] proposed two 3D
CNN architectures based on VGGNet and ResNet, proving
that the step of manual feature extraction is unnecessary for
brain MRI image classification. Their 3D models, 3D-VGG
and 3D-ResNet, are widely used in research to classify 3D
medical images. Also, the usage of 3D CNN was focused in
Ehsan Hosseini-Asl et al. [7] and [42], in which Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data was classified.
The 3D convolutional neural network was utilized for feature
extraction from MRIs and to identify the biomarkers for
multiple AD classes. Similarly, Abrol et al. [43] also created
3D CNNs based on the ResNet architecture and tested them
on various binary andmulticlass tasks. They created a training
set for cross-validation and a small test set using ADNI data.
The results were promising; however, no comparisons were
madewith other standard evaluation frameworks, which leads
to an ambiguity that the model is overfitted on the training
examples. In [44], a deep learning-based classifier for AD
versusNC classification has been proposedwhere the discrete
volume estimation model with convolutional neural networks
has been used to extract deep features of the discrete volume
of the left and right hippocampal model (RHM and LHM).
Recently, [2] proposed the diagnostic model AD based on a
densely connected 3D CNN and an attention-driven mecha-
nism to combine high-level features and spatial information

TABLE 1. Demographic representation of all subjects.

extracted from MRI. J Liu et al. [45] proposed the depth-
wise separable convolution, replacing the conventional con-
volution with depthwise separable. AlexNet and GoogLeNet
transfer learning models were used to train their idea, which
significantly reduced the computational cost and parameters.

In this paper, a CNN network structure has been pro-
posed where the standard convolutional layer along-with
depthwise-pointwise convolutional layer was embedded to
extract more features that are sensitive to brain activities or
structural differences in large regions. To the best of our
knowledge, such architecture has not been used for the brain
image classification. This greatly reduces the number of
parameters while maintaining reasonable accuracy compared
to other benchmark models.

III. MATERIAL AND METHODS
A. MRI ACQUISITION PROTOCOL
The ADNI was established in 2003 as a public-private part-
nership led by Michael W. Weiner, MD. The primary goal
of ADNI was to determine whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
other biological markers and clinical and neuropsychological
assessment could be used together to track the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). T1-weighted MR images were acquired sagit-
tally in ADNI using a volumetric 3DMPRAGEwith a spatial
resolution of 1.25×1.25mm2 in-plane and 1.2mm thick sagit-
tal slices. The majority of these images were captured using
1.5 T scanners. More details about the MR acquisition can be
found at the ADNI’s website (http://adni.loni.usc.edu/).

B. PARTICIPANTS
We evaluated T1-weightedMRI data fromADN1/ GO of par-
ticipants, including 163 AD patients, 163 subjects diagnosed
with MCI, and 163 normal controls (NC) within 24 months
in this study. Table 1 shows the demographic details for
each group. The structural MRI scans used in the study
had already been reviewed for quality and underwent gradi-
ent inhomogeneity correction (gradwarp), B1 non-uniformity
correction, andN3 processing (to reduce the residual intensity
non-uniformity).

C. IMAGE PATCH GENERATION
Due to the volumetric nature of MRI images, the natu-
ral choice of deep learning model is a 3D Convolutional
Neural Network (3D CNN) [46]. Compared to 2D CNN
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FIGURE 1. Brain MRI images from the ADNI database depicting various
stages of Alzheimer’s disease.(a)-(c) Normal controls (CN); (d)-(f) Mild
Cognitive Impairment (MCI); (g)-(i) Alzheimer’s Disease (AD).

models, 3D CNN models are computationally intensive and
time-consuming to train due to their high-dimensional input.
Another problem is that most current medical datasets are
quite small. Due to the scarcity of data, it is not easy to
train a deep network that can be generalized to high levels of
complexity. Therefore, our study used 489 3D MRI scans of
dimensions 192×192×160 which cannot be directly fed into
a 2D CNNmodel. First, the 3DMRI scans were downsized to
96×96×96. The imageswere then divided into axial, coronal,
and sagittal slices. The slices at the beginning and end were
discarded since they did not contain any helpful information.
Also, the slices were normalized with a mean of zero and
a standard deviation of one. The randomly selected axial,
coronal, and sagittal patch slices were then used for training
the 2-D CNN model. Some examples of slices from MRI
scans of CN, MCI, and AD patients are shown in Figure 1.

D. NETWORK ARCHITECTURE
The CNN architecture used in this study was inspired by the
human visual cortex. The human eye receives information in
its receptive field, which is similar to the convolution opera-
tion that folds the input image and creates the feature map by
working with the receptive field of the input. The convolution
involves multiple layers, including ReLU activation features,
max-pooling layers, and fully connected layers.

Each input is processed through these operations to pro-
duce a final output in the form of a binary or multiclass
classifier. A set of neurons interconnects the convolu-
tional operation, shared hyperparameters, local connectivity,
and shift-invariance, to increase the network’s performance.
Based on this motivation, we proposed an end-to-end
deep CNN architecture for multi-label AD biomarker
identification using the entire image volume as input.

FIGURE 2. Basic architecture of VGG Net model [49].

Furthermore, we have also used the popular CNN architec-
tures such as VGG-Net and ResNet for classification tasks
compared to the proposed method. These models have been
successfully used in various applications, including image
classification, recognition, image labeling, and pose detec-
tion [47]. In this section, we discuss in detail our proposed
CNN architecture as well as related methods used in this
work.

1) VGG-NET MODEL
The VGG network is a brand name for the pre-trained CNN
model proposed by Simonyan and Zisserman [48] at Oxford
University in early 2014. VGG (Visual Geometry Group) was
trained on the Image Net ILSVRC dataset, which consisted
of images belonging to 1000 classes, with 1.3 million images
used for training and 50000 for validation. VGG-19, a vari-
ant of VGG architectures has 19 deeply linked layers and
has consistently performed better than other state-of-the-art
models. The model consists of highly linked convolutional
layers and fully linked layers, which allows better feature
extraction and the use of max-pooling (instead of average-
pooling) for down-sampling before classification with the
SoftMax activation function. The VGG-19 model is used as a
baselinemodel in this study, and the results are improvedwith
the ADNI dataset to classify multiple stages of Alzheimer’s
disease. The architecture of VGG-19 is shown in Figure. 2.

2) ResNet MODEL
Residual Network [50] won first place in classification,
localization, and detection at ILSVRC-2015. The researchers
wanted to explore if learning better meant the addition of
more layers on top of each other in the network. They dis-
covered the degradation problem, where traditional models
similar, to VGG, did not improve their performance after a
certain number of layers rather get worse. To solve this prob-
lem, they proposed the residual function, which is the basic
building block of a residual network (ResNet). In this work,
we directly adopted ResNet from the non-bottleneck 50-layer
architecture, where links with increasing dimensions were
either (A) identity links, i.e., zero padding, or (B) projection
links, i.e., convolutions with 1 × 1 filter (kernel) size, and
used it as the basic model to classify AD using the ADNI
dataset. Figure. 3 shows the basic architecture of ResNet-50
(only 34 layers are shown for simplicity).

3) PROPOSED MODEL
Convolutional layers are the fundamental building blocks
for any deep CNN that uses complex activation functions
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FIGURE 3. ImageNet network architecture examples. A residual network
with 34 parameter layers is shown at the top. The dotted shortcuts
expand the dimensions. At the bottom is a simple network with
34 parameter layers [52].

to achieve the best performance. To diagnose Alzheimer’s
disease, the proposed model uses a deep convolutional
neural network to automatically extract features from the
whole-brain MRI scans. Figure. 4 shows the proposed
pipeline consisting of three main steps: brain volume resiz-
ing, 3D volume slicing, and CNN processing. Inspired by
the architectural pattern of ResNet and ConvMixer [51],
we proposed a simple yet effective convolutional method
that simultaneously performs standard convolution, depth-
wise convolution, and point-wise convolution, followed by a
skip convolution layer to learn multi-level features fromMRI
scans of the brain.

a: STANDARD CONVOLUTION
Figure. 5 illustrates the standard folding process. A standard
convolutional layer takes a DF ×DF ×M feature map I as
input and generates a DG×DG×N feature map output O,
where DF denotes the spatial width and height of the square
input featuremap,M denotes the number of input featuremap
channels, andN denotes the number of the output featuremap
channels. The feature is extracted from the Dk ×Dk sized
convolution kernel of the standard convolutional layer. Dk
denotes the spatial width and height of the convolution kernel.
The formula for the computation process of the standard
convolution from feature map I to feature map O is given by:

Gk,l,n = 6i,j,mKi,j,m,n.Ik+i−1,l+j−1,m, (1)

where I are the input feature maps, G is the output feature
maps and k are the convolution kernels. The position of the
convolutional kernel, elements is given by i and j. k and l
determine the position of the element in the input feature
map and the output feature map, respectively, while m is the
channel of the input feature map, and n is the channel of the
output feature map.

The parameters of standard convolution are calculated as
follows:

F = M × N × Dk2 (2)

The cost of computing standard convolution is shown by:

G = M × N × DF 2 × Dk2 (3)

where F stands for the total number of model parameters, G
represents the computational cost, M represents the number

of channels of the input feature map,N represents the number
of channels of the output feature map, DF represents the
spatial width and height squared of the input features of the
object map, and Dk represents the spatial width and height of
the convolution kernel.

b: DEPTH-WISE AND POINT-WISE
CONVOLUTION OPERATION
Convolution in depth is a convolution operation performed
separately for each channel of the input image. It is used
to extract spatial features in each dimension. Point-by-point
convolution is a standard convolution operation for the output
feature map. Figure. 6 shows a depthwise and point-wise
structure, where the size of the input image is Df × Df ×
M , where Df is the height and width of the input image and
M is the number of channels of the map, and the size of the
output feature map obtained by the convolution isDg ×Dg ×
M (Dg is the height and width of the output image), which
is equal to the number of channels of the input image. It is
used as the input for the next convolution. The size of the
convolution kernels for point-by-point convolution is 1 × 1,
and the number of channels on each convolution kernel must
be equal to the number of channels of the input feature map.
When the number of convolution kernels is N, the output
feature map after convolution is Dg × Dg × N .
The feature map for the depthwise convolution output is

written as:

Ḡk,l,m = 6i,jKi,j,m · Ik+i−1,l+j−1,m, (4)

where I denote the input feature maps, Ḡ denotes the output
feature maps, and K denotes the convolution kernels. The
element position of the convolution kernel is determined by I
and j. The values k and l determine the position of the input
feature map element and the output feature map, respectively,
while m represents the input feature map channel.
The calculation of the convolution parameters in depth and

the cost function are denoted as follows:

F2 = M×2
k (5)

and
G2 = M × D2

i×
2
k (6)

The number of parameters is proportional to the number of
feature mapping channels, and convolution kernels entered.
The computational cost varies with the number of input fea-
turemapping sources, convolution kernel, and quadratic input
feature mapping function. The convolution depth parame-
ters and computational cost need not consider the output
feature mapping N. Compared with relations (2) and (3),
equations (5), and (6) clearly show the simplicity of depth-
wise convolution. However, unlike a traditional convolutional
layer, depth-wise convolution only filters the input channels
and does not simply combine them to create new features.
Therefore, to generate new features, an additional layer
of 1 × 1 standard convolution is required [54]. The new
feature map is generated by the adding the depth-wise and

VOLUME 10, 2022 65059



F. U. R. Faisal, G.-R. Kwon: Automated Detection of AD and MCI Using Whole Brain MRI

FIGURE 4. The layout of the proposed model. The first part is based on slice selection, whereas the second part introduces an isotropic architecture that
allows the network to mix multiple feature maps that are more useful for classification.

FIGURE 5. Demonstration of architecture of the standard
convolution [53].

FIGURE 6. Depiction of depthwise convolution module and a pointwise
convolution module [53].

1 × 1 pointwise convolution. Therefore, the parameters and
the cost function can be calculated as shown in equations (7)
and (8), respectively:

F3 = M × D2
k +M × N (7)

and

G3 = M × D2
i × D

2
k +M × N × D

2
i (8)

E. IMPLEMENTATION DETAILS
In this work, we have built our 2D model using 3D structural
MRI scans of 489 patients (163 AD, 163 MCI, and 163 CN).
The original MR images were resampled to 96×96×96 res-
olution. A total of 40 brain fields were generated from each
part of the subject (axial, coronal, and sagittal) for training
and testing, resulting in 58680 feature fields, from which
19560 belonged to the AD group, 19560 to the MCI, and
19560 to the NC group.

During experiments, each group was randomly divided
into three parts: Training (60% of the subjects), Validation
(10% of the subjects), and testing (30% of the subjects).
The proposed classification method implemented in Python
3.8.10 using the Keras library based on Tensorflow 2.5.0,
and then run on a computer with NVIDIA RTX3090 GPU
tested in the Ubuntu 20.04-x64 environment. Initially, the
network parameters were initialized randomly and the Adap-
tive Moment Estimation (Adam) optimizer was used with an
initial learning rate of 0.001 and a decay rate of 0.9. The
batch size was configured to 32, and the dropout layer was
added to avoid overfitting.We used the proposed algorithm to
discriminate between AD patients, cognitively normal (CN)
and mild cognitive impairment in a multiclass classification
task (MCI), and to binary classify between AD and CN,
AD and MCI, and CN and MCI.

IV. EXPERIMENT AND RESULTS
A. PERFORMANCE EVALUATION
In the diagnostic tasks, the predicted results are given as True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). TP refers to a positive sample predicted
correctly as a positive sample. TN refers to a negative sample
correctly predicted as negative. The symbol FP means that
a negative sample is falsely classified as a positive sample.
The symbol FN means that a positive sample is falsely pre-
dicted as a negative sample. To evaluate our diagnostic model,
we use the following widely used indicators: accuracy, speci-
ficity, sensitivity, precision, F1 score, and receiver operating
characteristic curve (ROC curve). As shown in relation (9),
accuracy is the proportion of correctly diagnosed samples
among all test samples.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

As shown in equation (10), specificity represents the per-
centage of samples correctly diagnosed.

Specificity =
TN

TN + FP
(10)
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As shown in equation (11), sensitivity represents the ability
of a model to identify AD patients in all positive samples.

Sensitivity(Recall) =
TP

TP+ FN
(11)

Precision in equation (12) is defined as the percentage of
correctly predicted positive observations out of all predicted
positive observations.

Precision =
TP

TP+ FP
(12)

The F1 score is calculated as the weighted average of
Precision and Recall. As shown in equation (13).

F1− score = 2(
Precision× Sensitivity
Precision+ Sensitivity

) (13)

An ROC curve (receiver operating characteristic curve)
is a graph that depicts a classification model’s performance
across all classification thresholds. This graph depicts two
parameters:

First parameter is True Positive Rate (TPR) also referred
as a recall (14).

TPR =
TP

TP+ FN
(14)

whereas, the second parameter is False Positive Rate (FPR)
defined in equation (15).

FPR =
FP

FP+ TN
(15)

B. COMPARISON WITH BASELINE MODELS
The performance of the proposed method is evaluated using
the ADNI database. The proposed method showed good per-
formance in a multi-class classification task (AD versus MCI
versus CN) with the highest accuracy of 96.41%. Comparison
of the proposed work with other models trained on the same
dataset is presented in Table 2. A comparison shows that the
proposed model outperforms the benchmark models in terms
of accuracy despite having less number of parameters.

ResNet and VGG Net were selected as the benchmark
models for comparison. Using common indicators of clas-
sification performance such as sensitivity (SEN), specificity
(SPE), precision, F1 score, and accuracy (ACC), results
show that ResNet achieves an accuracy of about 95.34%,
which is 2.08% higher than the VGG (93.26%) due to
feature propagation enhancement and skip connection, but
lower than the proposed work. Our model achieved the
highest accuracy of 96.41%, which is 1.07% higher than
ResNet and 3.15% higher than the VGG network. Our
model also outperformed the baseline models in terms of
other performance metrics. For example, it achieved a speci-
ficity of 97.73% and precision of 95.50%, which are higher
than baseline models. With a sensitivity and F1 score of
95.31% and 95.32% respectively, ResNet was marginally
better. Figure. 7 (a) shows the corresponding ROC for the
ADNI dataset as well as the corresponding confusion matrix
in Figure. 7 (b). Figure. 7 (c) and (d) depicts the accuracy

and loss graph respectively for both training and validation
dataset. We have demonstrated the effectiveness of our CNN
model developed in this study for both binary classifications
and multiclass classifications. Training for binary classifica-
tion is performed for three different scenarios: AD versus CN,
AD versus MCI, and MCI versus CN.

C. COMPARISON WITH OTHER EXISTING METHODS
Using the ADNI database, we compared the classification
results of our model with those from previous studies (see
Table 3). We started by comparing our proposed model
with traditional machine learning methods. Liu et al. [55]
proposed ROI-based methods named as a whole-brain hier-
archical network to extract brain features, which were then
classified using machine learning methods such as multiple
kernel boosting (MKBoost) algorithm. It achieved 94.65%
for AD vs CN, 89.63% for AD vsMCI, and 85.79% accuracy
for MCI vs CN classification using a single structural MRI
modality dataset. Sun et al. [56] achieved similar results.
In their study, proposed a new SVM-based learningmethod to
extracted spatial-anatomical information and also introduce
a group lasso penalty to induce the structure sparsity. Their
proposed method achieved 95.1% for AD vs CN, 70.8%
for MCI vs CN, and 65.7% accuracy for AD vs MCI clas-
sification. In addition, we compared our model with exist-
ing deep learning methods. In their work, Hosseini et al. [7]
proposed a 3D convolutional auto-encoder-based method.
To capture anatomical shape variations in structural MRI
scans of the brain used a pre-trained model. Later, they
tested their model with CAD Dementia MRI dataset with-
out preparatory skull removing testing and achieved 89.1%
accuracy in multi-class classification. Furthermore, on binary
classification tasks, their model achieved 97.6% for AD vs
NC, 95% for AD vs MCI, and 90.8% for MCI vs NC.
Basaia et al. [40] proposed a deep learning algorithm for
predicting individual Alzheimer’s disease diagnosis based
on a structural cross-sectional MRI scan. Their proposed
model was 99.2% accurate for AD vs CN, 87.1% accu-
rate for MCI vs CN, and 75.4% accurate for AD vs MCI.
Whereas Liu.J et al. [57] used the OASIS dataset to construct
a CNN-based architecture that achieved 78.02% accuracy for
multiclass classification, 84.65% forMCI versus CN, 72.96%
for AD versus MCI, and 75.2% accuracy for MCI versus CN
classification using the ADNI data set. Later, in the same
paper they improved their work to reduce the number of
parameters using a deep separable convolution model and
achieved 77.79% accuracy by reducing the parameters of the
CNN model by 87.94%. To learn the features from the seg-
mented part of the hippocampal, Liu.M et al. [57] developed
an architecture combining 3D Densely connected convolu-
tional networks (3D Dense Net) and multi-task CNN. They
achieved 88.9% accuracy for AD vs NC and 76.2% accuracy
for MCI vs NC. Moreover, Xu et al. [58] proposed a mod-
ified Tresnet architecture in their paper, to extract features
from MRI images of the gray matter. They achieved 86.9%
accuracy in classifying AD vs CN and 63.2% in classifying
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FIGURE 7. Figure(a): Receiver operating characteristics (ROC) curve for CN (Class 0), MCI (Class 1) and AD (Class 2) Figure(b):
Confusion matrix for testing data with true and predicted labels, Figure(c): Accuracy for training and testing data over 100 epochs
Figure(d): Training and validation data los.

TABLE 2. Comparison of methods performance for multiclass classification.

multiple classes. And lastly, Aderghal et al. [59] proposed a
transfer learning scheme based on convolutional neural net-
works to automatically classify brain scans, relying on small
ROI (few slices of the hippocampal region). Their evaluation
shows that AD vs CN is 91.86%, AD vs MCI is 69.95%, and
MCI vs CN is 68.52%. Table 3 summarizes the comparison of
different studies, whereas Table 4 compares several proposed
methods in terms of parameters. Both these tables show
the discrimination tendency of the proposed method with a
reduced number of parameters.

V. DISCUSSION
Effective and accurate diagnosis of Alzheimer’s disease
is critical for early intervention and treatment of the dis-
ease. Therefore, researchers have focused on developing
computer-based systems to detect Alzheimer’s disease at an
early stage. Since then, CNN-based image classification has

been widely used in medical disease diagnosis. However, it is
not possible or realistic to create an efficient CNN model
capable of producing good results. In this study, we inves-
tigated the classification of MRI images using CNN features
with improved accuracy and less number of parameters.

Previously, the contemporary models focused on increas-
ing the depth and complexity of the network to improve
classification performance. In this study, however, a new
approach to reducing the number of parameters and the com-
putational complexity of a CNN is presented. Earlier pro-
posed models with increased depth suffered from the issues
of vanishing gradient. In this regard, we attempted to mitigate
the vanishing gradient problem, promote feature reuse, and
greatly reduce the number of parameters by proposing a mod-
ified convolutional network. Where the network consisted of
three different layer types. The first type was an input layer,
intowhich theN gray level imageXn, n ∈ [1,N ] patcheswere
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FIGURE 8. Comparison of models in terms of FLOPs, parameters and
accuracy.

taken, then their pixels were scaled to 96×96 and normalized
to the interval [0, 1] and fed into the network. The second type
was a convolutional layer; Table 5 shows the proposed body
architecture used in this work. The proposed CNNmodel was
built by the interaction of four standard convolutional layers,
and three convolutional blocks, each of which consists of a
skip connection based depth-wise convolution (i.e., grouped
convolution with groups equal to the number of channels) fol-
lowed by point-wise (i.e., kernel size 1×1). Each convolution
in the block is followed by the GELU activation function,
Batch Normalization, and dropout layer. This model also uses
a residual convolutional layer inspired by the skip connection
model. The size of the convolution filters was set to 5 × 5,
and the filter numbers were set to 256. This was maintained
throughout the model to ensure that the same weights are
shared across the different sets of pixels in an image.

The fully connected layer was the third type of layer and
consisted of a set of input and output neurons that produced
the learned linear combination of all neurons from the previ-
ous layer after passing through a non-linearity. The inputs and
outputs of the fully connected layer were no longer spatially
arranged but represented a 1D vector.

We used three CNN architectures in this paper: VGG,
ResNet, and our proposed model. VGG networks are known
for their uniformity, making them relatively easy to cus-
tomize, verify, and use for a wide range of tasks; however, this
property also makes them significant in terms of the number
of parameters and hardware requirements. These drawbacks
have been addressed in ResNet architectures, which also use
concrete building blocks and allow the extraction of more
complex patterns from data while increasing the number of
layers and decreasing the number of parameters. Taking into
account the above drawbacks, our architecture tries to address
them through the concept of feature mixing as described
in [60], [61]. We have chosen depth-wise convolution to
mix spatial locations, point-wise convolution to mix channel
locations, as well as the skip convolution layer to mix global
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TABLE 4. Summarized results of the proposed method and published methods in terms of parameters.

TABLE 5. Proposed model layers.

features from the data while reducing model complexity.
In addition to that, from a practical point of view, hard-
ware performance must be regarded as an important task.
To accomplish this, floating-point operations (FLOPs) are
also considered as an important predictor of energy usage and
latency along with the number of parameters [62]. Generally
speaking, the network with lower parameters and FLOPs
requires less memory to save the model, requires less hard-
ware memory, and thus it is more friendly to the embedded
end. To this end, a comparison of accuracy and the com-
putational costs of the benchmark and proposed model is
depicted in Figure. 8. The advantage of the proposed model
is that the number of FLOPs is significantly reduced as
compared to the VGG19 model while reducing the number
of parameters by 90.98%. The number of FLOPs is compa-
rable with ResNet50; however, in terms of parameter count,
the proposed method has 85.11% fewer parameters than
ResNet50. Comparative experiments show that the proposed

model achieves higher accuracy results with a reduced num-
ber of parameters and the computational cost.

Furthermore, distinguishing individual groups, particularly
MCI who were at high risk of developing AD, is critical for
clinical control and management of the disease. We obtained
an accuracy of 97.00% for AD vs. CN, 96.29% for MCI vs.
CN, and 88.00% for AD vs MCI using the proposed method,
indicating an improvement in performance compared to some
popular network models and indicating the potential of the
proposed model to detect subjects in prodromal dementia.

VI. CONCLUSION
We optimized a CNN for 3Dwhole-brain images using ADNI
data and obtained the best accuracy with an isotropically
repeated convolutional block network architecture. Contem-
porary state-of-the-art systems were outperformed by the
proposed method. Moreover, our approach is fully automatic
(i.e., no additional information input or manual intervention
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is required) and extremely fast. The proposed method can be
used to find meaningful patterns in data, confirm previous
findings by specialists, aid in diagnostic scenarios, and even-
tually identify patterns for diseases other than Alzheimer’s.
Future research could look at obtaining similar or better
results for images that have already been pre-processed for
skull alignment and subtraction. Finally, it would be interest-
ing to include patient history data to enrich the information
available in theMRIs, drive the decision-making process, and
link it to the patient’s background.
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